Copied to
clipboard

G = C32⋊D8order 144 = 24·32

The semidirect product of C32 and D8 acting via D8/C2=D4

non-abelian, soluble, monomial

Aliases: C32⋊D8, C2.3S3≀C2, (C3×C6).3D4, D6⋊S31C2, C322C81C2, C3⋊Dic3.1C22, SmallGroup(144,117)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C32⋊D8
C1C32C3×C6C3⋊Dic3D6⋊S3 — C32⋊D8
C32C3×C6C3⋊Dic3 — C32⋊D8
C1C2

Generators and relations for C32⋊D8
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=b, dad=cbc-1=a-1, bd=db, dcd=c-1 >

12C2
12C2
2C3
2C3
6C22
6C22
9C4
2C6
2C6
4S3
4S3
12C6
12C6
9C8
9D4
9D4
2D6
2D6
6Dic3
6C2×C6
6Dic3
6C2×C6
4C3×S3
4C3×S3
9D8
6C3⋊D4
6C3⋊D4
2S3×C6
2S3×C6

Character table of C32⋊D8

 class 12A2B2C3A3B46A6B6C6D6E6F8A8B
 size 111212441844121212121818
ρ1111111111111111    trivial
ρ211-1-111111-1-1-1-111    linear of order 2
ρ311-1111111-1-111-1-1    linear of order 2
ρ4111-11111111-1-1-1-1    linear of order 2
ρ5220022-222000000    orthogonal lifted from D4
ρ62-200220-2-200002-2    orthogonal lifted from D8
ρ72-200220-2-20000-22    orthogonal lifted from D8
ρ8440-21-20-21001100    orthogonal lifted from S3≀C2
ρ94420-2101-2-1-10000    orthogonal lifted from S3≀C2
ρ1044-20-2101-2110000    orthogonal lifted from S3≀C2
ρ1144021-20-2100-1-100    orthogonal lifted from S3≀C2
ρ124-400-210-12--3-30000    complex faithful
ρ134-400-210-12-3--30000    complex faithful
ρ144-4001-202-100--3-300    complex faithful
ρ154-4001-202-100-3--300    complex faithful

Permutation representations of C32⋊D8
On 24 points - transitive group 24T218
Generators in S24
(1 21 10)(2 22 11)(3 12 23)(4 13 24)(5 17 14)(6 18 15)(7 16 19)(8 9 20)
(1 21 10)(2 11 22)(3 12 23)(4 24 13)(5 17 14)(6 15 18)(7 16 19)(8 20 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 24)(18 23)(19 22)(20 21)

G:=sub<Sym(24)| (1,21,10)(2,22,11)(3,12,23)(4,13,24)(5,17,14)(6,18,15)(7,16,19)(8,9,20), (1,21,10)(2,11,22)(3,12,23)(4,24,13)(5,17,14)(6,15,18)(7,16,19)(8,20,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,24)(18,23)(19,22)(20,21)>;

G:=Group( (1,21,10)(2,22,11)(3,12,23)(4,13,24)(5,17,14)(6,18,15)(7,16,19)(8,9,20), (1,21,10)(2,11,22)(3,12,23)(4,24,13)(5,17,14)(6,15,18)(7,16,19)(8,20,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,24)(18,23)(19,22)(20,21) );

G=PermutationGroup([[(1,21,10),(2,22,11),(3,12,23),(4,13,24),(5,17,14),(6,18,15),(7,16,19),(8,9,20)], [(1,21,10),(2,11,22),(3,12,23),(4,24,13),(5,17,14),(6,15,18),(7,16,19),(8,20,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,24),(18,23),(19,22),(20,21)]])

G:=TransitiveGroup(24,218);

On 24 points - transitive group 24T219
Generators in S24
(1 21 15)(2 16 22)(3 9 23)(4 24 10)(5 17 11)(6 12 18)(7 13 19)(8 20 14)
(1 15 21)(2 16 22)(3 23 9)(4 24 10)(5 11 17)(6 12 18)(7 19 13)(8 20 14)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 18)(10 17)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)

G:=sub<Sym(24)| (1,21,15)(2,16,22)(3,9,23)(4,24,10)(5,17,11)(6,12,18)(7,13,19)(8,20,14), (1,15,21)(2,16,22)(3,23,9)(4,24,10)(5,11,17)(6,12,18)(7,19,13)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)>;

G:=Group( (1,21,15)(2,16,22)(3,9,23)(4,24,10)(5,17,11)(6,12,18)(7,13,19)(8,20,14), (1,15,21)(2,16,22)(3,23,9)(4,24,10)(5,11,17)(6,12,18)(7,19,13)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19) );

G=PermutationGroup([[(1,21,15),(2,16,22),(3,9,23),(4,24,10),(5,17,11),(6,12,18),(7,13,19),(8,20,14)], [(1,15,21),(2,16,22),(3,23,9),(4,24,10),(5,11,17),(6,12,18),(7,19,13),(8,20,14)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,18),(10,17),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19)]])

G:=TransitiveGroup(24,219);

C32⋊D8 is a maximal subgroup of
C32⋊D85C2  C32⋊D8⋊C2  C3⋊S3⋊D8  C62.12D4  C62.13D4  C33⋊D8  C322D24
C32⋊D8 is a maximal quotient of
C32⋊D16  C32⋊SD32  C32⋊Q32  C62.3D4  C62.7D4  He3⋊D8  C33⋊D8  C322D24

Matrix representation of C32⋊D8 in GL4(𝔽7) generated by

3243
4556
3361
0001
,
6211
2661
0010
0002
,
0321
1154
4353
3341
,
0110
1010
0060
0001
G:=sub<GL(4,GF(7))| [3,4,3,0,2,5,3,0,4,5,6,0,3,6,1,1],[6,2,0,0,2,6,0,0,1,6,1,0,1,1,0,2],[0,1,4,3,3,1,3,3,2,5,5,4,1,4,3,1],[0,1,0,0,1,0,0,0,1,1,6,0,0,0,0,1] >;

C32⋊D8 in GAP, Magma, Sage, TeX

C_3^2\rtimes D_8
% in TeX

G:=Group("C3^2:D8");
// GroupNames label

G:=SmallGroup(144,117);
// by ID

G=gap.SmallGroup(144,117);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,73,218,116,50,964,730,256,299,881]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=b,d*a*d=c*b*c^-1=a^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊D8 in TeX
Character table of C32⋊D8 in TeX

׿
×
𝔽